

Effective from Session: 2020) -21						
Course Code	BE 601	Title of the Course	Bioinformatics, Genomics and Proteomics	L	Т	Р	С
Year	2	Semester	3	2	1	0	3
Pre-Requisite	None	Co-requisite	None				
Course Objectives	Bioinformatio	cs in varied area of b	ing and understanding the detailed developments and app iological research. The course generally focuses on generally focuses on general platform.				

	Course Outcomes
CO1	Given a single biological sequence as an input, would be able to perform its pairwise alignment with a template sequence or its pair wise
	similarity searching with the list of sequences present in a reference database.
CO2	Given an input protein sequence, would be able to predict its secondary & tertiary structure data. Given an input nucleotide sequence
	would be able to predict its genetic sequence. Given a protein and ligand molecule, would be able to draw out its various physiological,
	molecular and clinical level of interaction data in a pipeline manner.
CO3	For a particular species of interest, would be able to draw out its structural and functional genomics data.
CO4	Given an input protein sequence, draw out its proteomics related data involving its structural, functional and protein -protein interactional data
	from the various available online resources.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Bioinformatics & Sequence Analysis	Nucleic acid sequence data banks, GenBank; EMBL; Brief overview of Human Genome Project (HGP): goals and applications. Pair wise sequence alignment: Needleman and Wunsch; Smith Waterman algorithms; Database Similarity Searches: Basic Local Alignment Search Tool (BLAST) & FASTA methods.	8	CO1
2	Applied Bioinformatics	Drug Designing, Stages of Drug Designing, DNA microarrays and its applications, Determination of Secondary & Tertiary structure of proteins: Chou Fasman method, Homology Modeling and its applications; Gene prediction studies: Promoter and regulatory regions scanning.	8	CO2
3	Structural & Functional Genomics	Multiple sequence alignments: Strategies and applications in Phylogenetics. Structural genomics (SG): Basic principles and applications, approaches for target selection. Functional genomics: application of sequence based and structure-based approaches to assignment of gene functions e.g. sequence comparison, structure analysis (especially active sites, binding sites) and comparison, pattern identification.	8	CO3
4	Proteomics: Tools and Databases	Proteomics: an introduction; Study of transcriptome and proteome; Protein-protein interactions: databases such as DIP, PPI server and tools for analysis of protein protein interactions. Protein arrays: basic principles; bioinformatics-based tools for analysis of proteomics data, Tools available at ExPASy Proteomics server; Introduction to Protein Sequence Data Banks: UniProt, SwissProt.	8	CO4
Referen	nce Books:			
		Bioinformatics: A practical Guide to the analysis of genes and proteins., Wiley 2004, ISBN: 978-		
Stephen 1588292		e D; Introduction to Bioinformatics: A Theoretical and Practical Approach., 2003, Human	a Press, ISI	3N-13: 978-
Harren J	Jhoti, Andrew R. Leach;	Structure- based Drug Discovery, Springer, 2007, ISBN 1402044070		
Andrew	Leach; Molecular Mode	elling: Principles and Applications (2nd Edition), Prentice Hall, 2001, ISBN 13: 9780582382107		
e-Lea	rning Source:			
Comput	ational chemistry in dru	g discovery. European Bioinformatics Institute - EMBL-EBIhttps://www.youtube.com/watch?v=	9DESulCW	bRQ
Nationa	l Center for Biotechnolo	gy Information, www.ncbi.nlm.nih.gov		
Auto Do	ock, autodock.scripps.ed	u		
Webina	r recording: a sequel for	beginners: ligand-based drug design — the basics https://www.youtube.com/watch?v=ef5EaooE	<u>YUU</u>	

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	2	2	1	1	1	2	2	1	2	3	1	3
CO2	2	3	3	2	2	1	1	1	2	2	1	2	3	3	2
CO3	2	3	3	3	3	1	1	1	2	2	1	2	3	3	2
CO4	2	2	2	2	1	1	1	2	2	1	2	1	3	2	2

Effective from Session: 2020-2	21						
Course Code	BE602	Title of the Course	Immunotechnology	L	Т	Р	С
Year	II	Semester	III	2	1	0	3
Pre-Requisite	None	Co-requisite	None				
Course Objectives	mechanism of	11	e the students about components associated with immune systen e also deals with implications of deregulation of basic regulator)

	Course Outcomes
CO1	The student will be able to describe the fundamental principles of immune response including molecular, biochemical and cellular basis of immune
	homeostasis.
CO2	Describe the various aspects of immunological response and how its triggered and regulated
CO3	Understand the rationale behind various assays used in immunodiagnosis of diseases and will be able to transfer knowledge of immunology in clinical
	perspective.
CO4	Explain the principles of Graft rejection, Auto immunity and antibody-based therapy.
CO5	Demonstrate a capacity for problem-solving about immune responsiveness, knowledge of
	the pathogenesis of diseases and designing of immunology-based interventions for effective treatment.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Humoral and Cell Mediated Immunity	B-cell and T cell activation, Structure and function of MHC molecules. Exogenous and endogenous pathways of antigen processing and presentation. Antibodies and antibody based therapy: Production of Polyclonal antibodies with different types of antigens: antigen preparation and modification, adjuvant, dose and route of antigen administration, collection of sera, purification of antibodies; Inhibitors of tumor necrosis factor, targeting the IL2 receptor with antibodies or chimeric toxins, monoclonal antibodies to CD3.	8	CO1
2	Hybridoma Techniques and Monoclonal Antibody Production	Myeloma cell lines - fusion of myeloma cells with antibody producing B-cells-fusion methods - selection and screening methods for positive hybrids - cloning methods - production, purification and characterization of monoclonal antibodies. Application of monoclonal antibodies in biomedical research, in clinical diagnosis and treatment; Production of human monoclonal antibodies and their applications.	8	CO2
3	Immunotherapy for Allergic Diseases	Specific and nonspecific immunotherapy for Asthma and allergic diseases, Drug therapy in HIV: AIDS and other Immunodeficiencies; Vaccine and peptide therapy, newer methods of vaccine preparation, sub-unit vaccines, immuno-diagnosis of infectious diseases, serological techniques-ELISA, RIA and Immunoblotting.	8	CO3
4	Transplantation	Graft rejection, evidence and mechanisms of graft rejection, prevention of graft rejection, immunosuppressive drugs, HLA and disease, Xenotransplantation. Drugs: Antimetabolites, corticosteroids, anti-inflammatory agents; Cytokines: Cytokines regulating immune inflammation: interleukin-4, interleukin-20, interleukin-12; The interferons: Basic biology and therapeutic potential.	8	CO4, CO5
Referenc	e Books:			
	lar & Molecular Immuno 012: Edition: 7 th	logy* by Abbas AK. Lichtman AH. Abbas AK. Pober JS. Publisher: Elsevier;		
2. "Immu	nology" by Kuby; Publis	her: WI Freeman and Company, New York: Year: 2007; Edition:6 th		
3. "Eleme	ents of Immunology" by	Fahim Halim Khan: Publisher: Pearson: Year: 2009; Edition: 1 st		

4. "'Immunology" by Roitt, Publisher: Edinburg Mosby: Year: 2002; Edition: $\mathbf{6}^{\text{th}}$

e-Learning Source:

- 1. https://aacijournal.biomedcentral.com/articles/10.1186/s13223-018-0278-1
- 2. https://www.ncbi.nlm.nih.gov/books/NBK7795/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
									1						
CO1	1	2	1	3	2	2	1	1	1			3	3	3	1
CO2	3	3	1	1	3	1	1	1	1			3	3	3	1
CO3	3	3	1	1	3	1	1	1	1			3	3	3	2
CO4	2	3	1	1	3	1	1	1	2			3	3	3	1
CO5	3	3	1	1	3	1	1	1	1			3	3	3	1
		-	-	1 1	Conn	alation) Mode	moto Cor	molotion	2 Substanti	al Correlatio				-

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Т

Effective from Session: 2020)-21						
Course Code	BE 603	Title of the Course	Colloquium	L	Т	Р	С
Year	2	Semester	3	0	0	4	2
Pre-Requisite	None	Co-requisite	None				
Course Objectives			to acquaint the student with various techniques used in con on of their project work in the final year	ntemp	orary re	search	that

	Course Outcomes						
CO1	The students will learn about the basic search engine of scientific journal and indexing						
CO2	The students will learn about the different statistical tools for optimizing parameters						
CO3	The students will learn about the different manuscript formats, referencing and plagiarism check						
CO4	The students will learn about the thesis writing and presentation						
CO5	The students will learn about the ethics in conducting research						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		Searching for scientific literature (Science direct, SCOPUS, Google scholar, exposure to different manuscript forms (Review, Short note, Research Article, Communication	8	1
2		Design of experiments in research, Basic statistical analysis (ANOVA, RSM, ANN)	8	2
3		Different manuscript formats and referencing styles (Use of Mendeley, Endnotes)	8	3
4		Publishing manuscripts (plagiarism check, cover letter, suggesting reviewer etc) Thesis writing and presentation.	8	4
5		Exposure of students to research in laboratory, Ethics in conducting research	8	5
Gupta, S	ce Books: S.P., Statistical Methods; S. Chand & J. Zar (2009): Bio-statistical Analysis			
e-Lear	ning Source:			
Scienc	edirect:https://www.sciencedirect.co	m		
Mende	eley:https://www.mendeley.com			

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
3	3	1	2	2				3				3	2	2
3	3	2	3	3			1	3				3	3	3
1	3			3			1	3			1	3	3	2
1	2	2	2	3			1	3	1		1	3	1	1
1	1	2	1	1			2	1		1	1	1	2	1
	3	3 3 3 3 1 3	3 3 1 3 3 2 1 3 2 1 2 2 1 1 2	3 3 1 2 3 3 2 3 1 3 - - 1 2 2 2 1 1 2 1	3 3 1 2 2 3 3 2 3 3 1 3 - - 3 1 2 2 2 3 1 1 2 2 3	3 3 1 2 2 3 3 2 3 3 1 3 - 3 1 2 2 2 1 2 2 2	3 3 1 2 2 3 3 2 3 3 1 3 - 3 1 2 2 2 1 2 2 3	3 3 1 2 2 3 3 2 3 3 1 1 3 2 3 3 1 1 2 2 2 3 1 1 2 2 2 3 1	3 3 1 2 2	3 3 1 2 2	3 3 1 2 2	3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 3 1 3 3 2 3 3 1 3 1 1 1 3 2 2 3 1 1 3 1 1 1 2 2 2 3 1 1 3 1 1 1 2 2 2 3 1 1 1 1 1	3 3 1 2 2	3 3 1 2 2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:												
Course Code	BE-604	Title of the Course	ADVANCES IN MOLECULAR TECHNIQUES	L	Т	Р	С					
Year	IInd	Semester	IIIIrd	2	1	0	3					
Pre-Requisite	None	Co-requisite	None									
Course Objectives	To demonstrate proficiency in advanced molecular biology techniques and to inculcate an understanding of advanced molecular techniques,											

	Course Outcomes
CO1	The students will learn different techniques of DNA amplification, their principle and applications.
CO2	The students will understand the application of gene therapy by the use of gene silencing technique
CO3	The students will learn about the different DNA sequencing techniques, there principle, method, result interpretation and applications.
CO4	To make students understand about the importance and use of Molecular markers and techniques in molecular biology and biotechnology to identify a particular sequence of DNA in a pool of unknown DNA

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
1	PCR-based Techniques	Principle and applications of PCR; RACE; DD-RTPCR; Degenerate PCR, TA cloning, Realtime PCR, Scorpion probes, Site directed mutagenesis, PCR-based mutagenesis, Error-prone PCR	8	1			
2	Gene Silencing	Antisense RNA technique, Sense co-supression in plants and animals, RNAi, Gene silencing, Ribozymes	8	2			
3	Sequencing Techniques	Rapid DNA and RNA sequencing techniques, Sanger method, Maxam and Gilbert procedure, Automated DNA sequencing, Pyrosequencing, Genomics: High throughput, Shot gun, Clone contig, Microarray, Protein microarray	8	3			
4	Molecular Markers and other Molecular Techniques	d other Molecular Molecular Molecular					
Reference	e Books:						
1. M	olecular Cloning; Sambroo	k and Russel, Cold Spring Harbor Laboratory					
2. Ge	ene Cloning and DNA An	alysis: An Introduction, T.A. Brown; Blackwell Publications					
3. Pri	inciples of Gene manipula	ation and genomics; Primrose and Twyman; Wiley Publishing					
e-Learn	ning Source:						
•	ing boulet.						

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	101	102	105	101	105	100	10/	100	107	1010	1011	1012	1501	1502	1505
CO1	3	2	2	1	3			1				1	2	1	2
CO2	3	1	2		2		1	2				1	2	1	
CO3	2	1	2		3			1	2			2	3	1	1
CO4	2		3	1	2	1		1				1	3	1	2
CO5															

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

integral chiversity, Lucidion												
Effective from Session: 2020-2	21											
Course Code	BE605	E605 Title of the Course Animal Cell Engineering					С					
Year	Π	Semester	Ш	2	1	0	3					
Pre-Requisite	None	Co-requisite	None									
Course Objectives	The course will help students to understand mechanisms of gene manipulation of animal cells, stem cell therapeutics and other											
Course Objectives	frontier areas a	associated with molecular	medicine.									

	Course Outcomes
CO1	The student will be able to describe the vast potential of animal biotechnology to eliminate or control many diseases and improve the health of
	animals and humans.
CO2	Relate the basic principles of biotechnology by application of genetics and techniques of molecular biology to animals for providing new medical
	services viz. stem cell therapy,
	gene therapy, vaccines, transplants, transgenic, organotypic cultures etc.
CO3	Describe the understanding of impact of engineering solutions on the society and also show awareness of contemporary issues of ethical and regulatory
	bodies exhibited by
	the biosafety risk associated with GMO construction in mammalian models.
CO4	Understand the technical aspects of existing technologies that will help them to address the complex medical challenges by applying their knowledge
	for the welfare of humankind.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to animal biotechnology	Animal Biotechnology and its scope, Principles of sterile techniques and cell propagation, Cell culture media: Physicochemical Properties, Chemically defined and Serum free media. Culture Environment, Cell Adhesion. Types of culture system: monolayer culture, Roller bottle, Suspension culture, static suspension culture, agar culture, agitated micro carrier suspension culture, hollow fiber systems, Scaling up factors. Strategies of medium optimization, Organotypic cultures, Animal Tissue Engineering, Bioartificial Organs, Scaffolds and Biomaterials used in Tissue Engineering.	8	CO1
2	Primary Culture	Isolation of Tissue, isolation of cells from explants by enzymatic disaggregation, mechanical disaggregation, EDTA treatment. Steps involved in primary cell culture, Cell line characterization: Morphology, Chromosome Analysis, Antigenic Markers, Transformation, Immortalization, Cell counting, Rates of Synthesis, Generation Time. Measurement of cell growth and viability, cell synchronization, cell transformation, maintenance of cell culture through sub-culturing and cloning, cryo-preservation, application of cell cultures. Types of microbial contamination and Eradication of Contamination	8	CO2
3	Mammalian Cell Lines	Mammalian cell expression system, gene transfer techniques in Mammalian cells, Stem cell culture: principles for identification, purifications, assessment of proliferation heterogeneity, long-term maintenance and characterization, Embryonic and adult stem cells and their applications. Genetically modified stem cells in gene therapy, Markers for stem cell identification, characterization of differentiated cell types, Applications of stem cells.	8	CO3
4	Transgenic Animals			CO4
Reference	ce Books:			
1. "Gene	Cloning and DNA Analy	vsis" by TA Brown, Publisher: Oxford Balckwell Science, Year: 2008, 2011, Edition: 4th, 5th.		
2. "Old &	& Primrose "Principles of	Gene Manipulation", Publisher: Balckwell; Year: 2014, Edition: 7th		
3. "Meth	ods of Tissue Engineering	g" Anthony Atala, Robert P. Lanza; Publisher: Elsevier; Year: 2005,		
4 : "Anin	nal Cell Biotechnology: M	Methods and Protocols" by Nigel Jenkins; Publisher: New Jersey: Humana Press; Year: 2005.		
e-Lear	ning Source:			

1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325846/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	3	3	2	1					3	3	3	1
CO2	3	3	3	3	3	1	1					3	3	3	1
CO3	3	2	3	3	3	1	1					3	3	3	1
CO4	3	3	3	3	3	1	1					3	3	3	2
				1- Low	Correlat	tion; 2- N	Ioderate	Correlat	tion; 3- S	ubstantial	Correlatio	on			
	1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation Name & Sign of Program Coordinator Sign & Seal of HoD														

Effective from Session:2021-2022											
Course Code	BE606	Title of the Course	Biochemical Reaction Engineering	L	Т	Р	С				
Year	Π	Semester	III	2	1	0	3				
Pre-Requisite	BE311	Co-requisite	None								
Course Objectives	The course w	The course will help students to understand mechanisms of gene manipulation of animal cells, stem cell therapeutics and									
Course Objectives	other frontier	areas associated with m	nolecular medicine.								

	CourseOutcomes							
CO1	Determine the reaction order and specific reaction rate from experimental data.							
CO2	Calculate the size of bioreactor for continuous reaction.							
CO3	Analyze multiple reactions carried out isothermally in continuous, batch and semi batch reactors to determine selectivity and choose the							
	reactor for maximizing the selectivity.							
CO4	Understand the factors causing non-ideality in bioreactors							
CO5	Understand the different factors affecting the oxygen mass transfer in bioreactors							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Reaction basics	Rate of reaction, reaction order and rate laws, Rate-limiting step. Chain reactions. Pyrolysis reactions. Steady state ideal reactors: completely mixed and plug flow.	8	CO1
2	Reactor Engineering I	Reactor size comparisons for PFR and CSTR. Reactors in series and in parallel. How choice of reactor affects selectivity vs. conversion. Theory of the continuous and semi-continuous fermentor operation.	8	CO2 and CO3
3	Reactor Engineering II	Non-ideal reactor mixing patterns, Residence time distribution, Tanks in series model. Combinations of ideal reactors. Non isothermal reactors. Equilibrium limitations, stability. Derivation of energy balances for ideal reactors; equilibrium conversion, adiabatic and nonadiabatic reactor operation.	8	CO3
4	Mass transfer in bioreactor	8	CO4	
Referen	nce Books:			
Fogler H	H.S. Elements of chemi	cal reaction Engineering. 4th edition, Prentice- Hall of India Pvt Ltd, 2006.		
Levensp	piel O., Chemical React	ion Engineering. 3rd edition, Wiley New York. 1992.		
Smith J.	.M., Chemical Enginee	ring Kinetics. 3rd edition. New York, McGraw-Hill, 1981.		
Holland	l, C. D., & Anthony, R.	G. Fundamentals of Chemical Reaction Engineering, JohnWiley and Sons, 1990.		
e-Lea	rning Source:			
		ses/102/106/102106086/		
https://y	outu.be/F5hXo1fU0hg			
https://y	outu.be/QBFP2MEHtu	ık		
https://y	outu.be/prmNu7b7KY	c		
https://y	outu.be/oxHLdNQrGh	W		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO															
CO1	3	3	3	3	1	1						2	3	3	3
CO2	3	3	3	3	2	1						2	3	3	3
CO3	3	3	3	3	1	1						2	3	3	3
CO4	3	3	3	3	2	1						2	3	3	3
	3	3	3	3	1	1						2	3	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Session: 2020	Effective from Session: 2020-21												
Course Code	BE607	Title of the Course	Environmental Biotechnology	L	Т	Р	С						
Year	2	Semester	3	2	1	0	3						
Pre-Requisite	BE401	Co-requisite											
Course Objectives	responsible f	or degradation of natur	s to impart students an understanding of environmental p ral resources and biodiversity. It also familiarizes them w as viz, bioenergy and biomining.										

	Course Outcomes
CO1	The student will be able to distinguish the exact root cause of environmental pollution problems.
CO2	They will be comprehend various biotechnological techniques and applications useful to predict and deal with environmental problems
CO3	They will be able to apply the biotechnology core principles in waste treatment system and to design the novel biological treatment system at
	institutional as well as industrial scale
CO4	The students will be able to understand the regulatory mechanism in the area of environmental compliance laid down by various agencies

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Introduction to Ecosystem & Environmental Pollution	Source of air, water and solid wastes, Ecosystem, Ecosystem Management, Renewable resources, Role of biotechnology in environmental protection,. Air, water and soil pollution: cause and control measures. Treatment technologies, Biofilters and Bioscrubbers for treatment of industrial waste.	8	1						
2	Bioreactors & Rural Biotechnology	Biocompositing, Biofertilizers; Vermiculture; Organic farming; Biomineralization; Biofuels; Bioethanol and Biohydrogen; Energy management and safety.	8	2						
3	Water Quality Modeling For Streams	Addeling For Streams management; waste water treatment, sewage treatment through chemical, microbial ar biotech techniques, Treatment of waste water from dairy, tannery, sugar and antibiot industries. Waste recovery system. Primary methods; setting, pH control, chemic treatment. Secondary methods; Biological treatment, Tertiary treatments; like ozonization								
4	Environmental Regulations and Technology	Regulatory Concerns, Technology; Laws, regulations and permits, Air, Water, Solid Waste, Environmental Auditing, National Environmental Policy act, Occupational Safety and Health Act (OSHA), Storm Water Regulations; Technology (waste water); Recycling of Industrial wastes: paper, plastics, leather and chemicals.	8	4						
Referen	nce Books:									
1. E	E.P. Odum "Fundamentals o	f Ecology" V.B. Saunders and Co. 1974.								
2. V	W.J. Weber "Physics-Chemi	cal Process for water quality control, Wiley-international Ed.								
3. A	Allan Scagg "Environmental	Biotechnology" Oxford University Press, Canada. 2004.								
4. E	Environmental Biotechnolog	y by Prof. Jogdand, Himalayan publishing House, 2010.								
e-Lea	rning Source:									
		/0/folders/1oC53Ffor4ZGqdSHUmcipeOgyaus21Jzu								

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	101	102	105	104	105	100	107	100	10)	1010	1011	1012	1501	1502	1505
CO1	2	2	1	1	3	1	3	1					3	3	3
CO2	3	3	2	3	3	2	3	2					3	3	3
CO3	3	3	2	3	3	2	3	2					3	3	3
CO4	1	1	2	2	1	3	3	3					3	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020)-21						
Course Code	BE 608	Title of the Course	Secondary Metabolism in Plants	L	Т	Р	С
Year	2	Semester	3	2	1	0	3
Pre-Requisite	None						
Course Objectives	plants especies phytopharma	ally as secondary metal ceutical ranging from ar	o impart students an understanding of biologically active con- bolites that have been used as a source of major, essentia nti-cancer activity to HIV. There has been an exclusive dem- e human health and well being.	ıl oils,	anti-ox	dants	and

		Course Outcomes
•	CO1	Introduction to primary & secondary metabolism: structure, biosynthesis and metabolism of important secondary products; Glycosides, isoprenoids, cardenolides, alkaloids, phenylpropanoids and antibiotics.
(C O2	The students will be able to understand the major enzymes involved in secondary metabolism and their significance.
(C O 3	The students will learn about the Regulation and expression of secondary metabolism.
	CO4	To make students understand about the metabolic pathway engineering for production of secondary metabolites This course will help the students to gain knowledge about bioactive compounds and their metabolism in plant system which is used to improve the human health and their well being.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Types of secondary metabolites and their synthesis	Microbiology and its scope, Biogenesis and Abiogenesis theories, Koch's postulates. Microbial diversity: Morphology, structure and microbial diversity of bacteria, fungi, viruses and protozoa. Characteristic of prokaryotic and eukaryotic cells	8	1
2	Enzymes involved in secondary metabolism	Important groups of secondary metabolic enzymes; Significance of 8 secondary metabolism and products for the producer organism.	8	2
3	Regulation of secondary metabolism	Regulation and expression of secondary metabolism; regulation of enzyme activity; regulation of enzyme amount; integration with differentiation and development; action of inducers; coordinated enzyme expression and sequential gene expression.	8	3
4	Culture systems and biotransformation	Metabolic products produced by in vitro culturing of plant cells, selection 8 of plant cells/tissues for the production of a specific product, Culture system in secondary plant product biosynthesis-batch continuous cultures and immobilized plant cells, Biotransformation of precursors by cell culturing. Metabolic pathway engineering for production of secondary metabolites	8	4
Referen	nce Books:			
Slater A	, Scott NW, Fowler MR "Plant Bioto	echnology: The Genetic Manipulation of Plants".		
Mantell	SH, Matthews JA, McKee RA, "Prin	nciples of Plant Biotechnology: An Introduction to Genetic Engineering in Plants".		
Brown	n TA, "Gene cloning: An Introduction	1".		
Old, Pri	mrose, "Principles of Gene Manipula	ation".		

e-Learning Source:

PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
СО															
CO1	1	1			2		1					3	3	1	1
CO2	1	1		1	2		1					3	3	2	1
CO3	3	2	2	1	2		1		1	1	1	3	3	3	2
CO4	3	2	3	1	1		1	1	2	1	2	2	3	1	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-2021							
Course Code	BE609	Title of te Course	PLANT DEVELOPMENTAL BIOLOGY	L	Т	Р	С
Year	II	Semester	III	0	0	8	4
Pre-Requisite	None	one Co-requisite None					
Course Objectives	To develop th	ne understanding of deve	elopmental processes taking place in plants.				

	Course Outcomes
CO1	Understand the concept of totipotency and differentiation.
CO2	Understand the development of seed and embryo with respect to hormonal control and signaling.s .
CO3	Understand the role of homeotic genes and organ development in plants.
CO4	Understand the aging process in plants and the physiological, ecological and evolutionary aspects of photosynthesis in C4 plants.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Basics of Differentiation	8	CO1	
2	Seed and Embryo Development	8	CO2	
3	Organ Development in Plants	Root development, shoot development, Flower development, Stomata development and patterning, Homeotic genes and its role in development, Developmental plasticity.	8	CO3
4	Aging and Regulation of Development	Aging: Senescence, Environmental regulation and development, the problem with Rubisco and photorespiration: the physiological, ecological and evolutionary aspects of photosynthesis in C4 plants.	8	CO4
Referen	nce Books:			
1.	Raghavan, V. Developmental Biolog	y of Flowering Plants, Springer publications, 2000.		
2.	Claudia Köhler and Lars Hennig . Pl	ant Developmental Biology: Methods and Protocols, Springer publications, 2010.		
3.	Cutler, Sean, Bonetta, Dario (Eds.). H	Plant Hormones Methods and Protocols, Springer publications, 2009.		
4.	L. D. Noodén, Aldo Carl Leopold,	Senescence and aging in plants, Academic Press, 1988.		
e-Lea	rning Source:			
		coyTs&list=PLLy_2iUCG87CTiGgwV-TU0zWDBOGm_911		
https://w	vww.youtube.com/watch?v=SfpPjTkoF	i i i i i i i i i i i i i i i i i i i		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	2	2	2	2	1	1	1	2	3	2	2	2
CO2	1	1	1	2	2	2	2	1	1	1	2	3	2	1	2
CO3	1	1	1	3	2	1	1	1	1	1	1	3	3	2	1
CO4	1	2	3	3	3	1	1	1	1	2	2	3	3	2	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-2021								
Course Code	BE610	Title of the Course	BIOSENSORS: DESIGN AND APPLICATIONS	L	Т	Р	С	
Year	II	Semester	III	2	1	0	3	
Pre-Requisite	None	Co-requisite	None					
Course Objectives	To develop	To develop an understanding about various principles and mechanisms involved in development of different						
Course Objectives	types of biosensor and their applications.							

	Course Outcomes
CO1	Develop an understanding of the fundamental principles for designing and calibrating a biosensor.
CO2	Analyse the requirements and choose a suitable biosensor or design a biosensor as per requirements.
CO3	Develop an understanding of the fabrication methods of various biosensors.
CO4	Develop an understanding of the applications of biosensors and allied novel technologies like Lab-on-a-chip and Point-of-care
	systems.

Unit No.	Ti	tle of th	ne Unit						Con	tent of Un	it			Contact Hrs.	Mapped CO
1	Bie	osenso: overv		ap co Fu ele po	Overview of biosensors and bio-electronic devices, History, concepts and applications. Fundamental elements of biosensor devices and design considerations, calibration, dynamic range, signal to noise, sensitivity. Fundamentals of surfaces and interfaces, modifications of sensor surface. Bio-electrochemistry, Electrochemistry for biosensors, Principles of potentiometry and potentiometric biosensors; amperometry and amperometric biosensors; Conductimetric and Impedimetric Biosensors.									n 7. 1- 8 d	CO1
2		Molec recogn eleme	ition	the im set	Molecular recognition elements: Enzymes, Antibodies and DNA. Kinetics and hermodynamics of bio-recognition reactions. Enzyme sensors and affinity sensors: mmune sensors, oligo-nucleotides sensors, SPR, FRET, Membrane protein ensors: ion channels, receptors, whole cell sensors – bacteria, yeast, mammalian ells, non-biological and bio-mimicry: molecularly imprinted polymers, non- biological organic molecules.								n 8	CO2	
3		Bas abricat biosen	tion of	co bio m-	mmobilization: adsorption, encapsulation - (hydro-gel, sol-gel glass, etc.), ovalent attachment, diffusion issues. Optical Biosensor, Microlithography for iosensors, FETS and Bio-FETS, MEMS and Bio-MEMS. Lab-on-a-chip: TAS and n-TAS devices, Sensors based on Fiber Optic. Electro-chemiluminescence, pH ensors, artificial receptors.									CO3	
4	ŀ	Applic	ation	pro Ag inv ch	Physical sensors: piezoelectric, resistive, bridge, displacement measurement, blood pressure measurement, quartz crystal microbalance. Applications of biosensors in Agriculture food safety food processing Biomedical: Point-Of-Care system Non-								n - 8 d	CO4	
Refere	nce Bo	oks:													
1. '	'Hand	book o	f Chen	nical ar	nd Biol	ogical	Sensors	s", Ric	hard F T	aylor; IOF	Publishir	ng Ltd; Editi	on Year: 199	96	
												Elsevier; Edi	tion Year: 20)11.	
3. '	'Biose	nsors";	; Jonatl	nan M.	Coope	er; Oxfo	ord Uni	versity	Press; E	Edition Ye	ear: 2003				
	0	Source													
1.	http://v	www.na	ture.co	m/subj	ects/bio			latter 1	Ma 4	Manula	£ CO = - ''				
PO-						Course	Articu	lauon	viairix: (mapping (US WIL	h POs and P	508)		
PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	1	0	0	0	0	0	0	2	2	2	2
CO2	3	2	2	2	1	1	0	0	0	0	0	3	2	3	2
CO3	3	1	3	1	1	1	0	0	0	0	0	3	2	2	2
CO4	3	2	2	2	2	1	1	0	0	0	0	3	3	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Τ

EffectivefromSession: 2020-	2021								
CourseCode	BE611	TitleoftheCourse	eoftheCourse IPR, Biosafety and Bioethics						
Year	Π	Semester	emester III 2 1						
Pre-Requisite	None	Co-requisite							
CourseObjectives	students as a	form of patent in the fie	I bioethics recognizes the need for possibility to exchange v Id of science and technology development. The basic knowl of how they save and product their invention or intellectual	edge o	f the su	bject pa	-		

	CourseOutcomes
CO1	Students will gain the basic knowledge of legal issues and terminology related to IPRs
CO2	The learners also gain and practice the patent legality and filing procedure of patent
CO3	Students will gain the basic and fundamental knowledge of biosafety guidelines and their issues.
CO4	Students will apply the applications part and impart the sense of bioethics in life science

Unit No.	TitleoftheU nit	ContentofU nit	ContactHr s.	Mapped CO
1	History Of IPR	Jurisprudential definitions and concepts of property, rights, duties and their correlation; History and evolution of IPR like patent, design and copyright. Significance of IPR; Requirement of a patentable novelty; Issues related to IPR protection of software and database; IPR protection of life forms; International convention in IPR; Geographical indication; Distinction among various forms of IPR; Rights / protection, infringement or violation, remedies against infringement: civil and criminal.	8	1
2	Patent Process	Obtaining patent; Invention step and prior art and state of art procedure; Detailed information on patenting biological products and biodiversity; Appropriate case studies; Indian Patent Act 1970 (amendment 2000); Major changes in Indian patent system as post TRIPS effects; Budapest treaty.	8	2
3	Biosafety Levels	Biosafety Levels: Safety guidelines for rDNA research and infectious agents; Containment facilities and its disposal; Radiation hazards; Safety concerns about transgenics: Environmental, Health, Economic. Safety concerns related to Animal Models.	8	3
4	Bioethics	Bioethics: Introduction, necessity and limitation; Ethical conflicts in Biotechnology; Different paradigms of bioethics: National and International guidelines; Bioethics of genes; Bioethics in health care: Bioethical dilemmas in medical and surgical treatment; Legal implications in bioethics.	8	4
	ceBooks:			
		inciples of Gene Manipulation".		
		echnology", Global Vision Publishing House.		
3. Arya	R "Bioethics". A	ad ethics", Princeton University Press. And Glick and Pasternak "Molecular Biotechnology".		
4. Erbis	sch FH and Mareo	dia KM "Intellectual Property Rights", Universities Press.		
Knight '	Patent strategy for	r researches and research managers'		
E cont	ents:			

PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS03 </th <th></th>																
CO1 2 3 3 2 3 3 3 - - - 2 3 3 3 CO2 2 </th <th></th> <th>PO1</th> <th>PO2</th> <th>PO3</th> <th>PO4</th> <th>PO5</th> <th>PO6</th> <th>PO7</th> <th>PO8</th> <th>PO9</th> <th>PO10</th> <th>PO11</th> <th>PO12</th> <th>PSO1</th> <th>PSO2</th> <th>PSO3</th>		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO2 2			3	3	3	2	3	3	3	-	-	-		3	3	3
CO3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CO2	2	2	2	2	2	2	2	2	-	-	-	2	2	2	
CO4 2 2 1 1 3 2 1 1 - - - 3 2 2 1	CO3	2	2	2	2	2	2	2	2	-	-	-	2	2	2	
	CO4	2	2	1	1	3	2	1	1	-	-	-	3	2		1

 $1\mbox{-}LowCorrelation; 2\mbox{-}ModerateCorrelation; 3\mbox{-}SubstantialCorrelation}$

Name &SignofProgramCoordinator	
	Sign&SealofHoD

Effective from Session:2020	-21											
Course Code	BE612	Title of the Course	Medical Biotechnology	L	Т	Р	С					
Year	2	Semester	3	2	1	0	3					
Pre-Requisite	None	Co-requisite	None									
Course Objectives	The course w	e course will acquaint the students with pathogenesis and management of different diseases.										

	Course Outcomes
CO1	To acquire knowledge about genetic disorders and its treatments.
CO2	To understand the molecularbasis of human diseases, its prevention and cures.
CO3	To develop knowledge of pathogenesis of various diseases caused by different microbes and suggestive treatment.
CO4	To equip with the knowledge of various laboratory techniques to diagnose various human diseases.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Genetic Disorders	General, systemic and specific syndromes. Classification of genetic diseases. Chromosomal abberations–Numerical disorders e.g.trisomies& monosomies, Structural disorders e.g. deletions, duplications, translocations & inversions, Genetic diseases–Autosomal, X-linked and Y-linked disorders and Mitochondrial disorders.	8	CO1						
2	Molecular Basis of Human Diseases	Pathogenic mutations and Dynamic Mutations - Fragile- X syndrome, Myotonic dystrophy. Prevention and treatment of human diseases Avoiding exposure to pathogen Antibiotics and chemotherapeutic agents - drug resistance and antibiotic policy Using body's immune responses Alternative systems - Chinese, European and Indian (Siddha, Ayurveda, Naturopathy, etc.) Gene therapy; Chemotherapy and radiotherapy of tumors; Stem cell therapy.	8	CO2						
3	3 Pathogenesis of Different Diseases Pathogenesis, clinical condition, laboratory diagnosis, epidemiology, chemotherap AIDS. Nosocomial infections, Factors that influence hospital infection, hospital pathogeneric route of transmission, investigation, prevention and control.									
4	Techniques in Laboratory Diagnosis	Haematology, biochemistry, microbiology, serology, radiology and other special methods. Prenatal diagnosis–Amniocentesis, Chorionic Villi Sampling (CVS), Non-invasive techniques- Ultrasonography, X-ray, Diagnosis using protein and enzyme markers, monoclonal antibodies. Microarray technology- genomic and cDNA arrays, application to diseases. Biosignalanalyzer, CT scan and Magnetic Resonance Imaging assisting the heart and kidney.	8	CO4						
Referen	ce Books:									
1. Ma	ckie and McCartney; Pr	actical Medical Microbiology; Elsevier; Edition: 14 th ; Year: 2012.								
2. Pra		nugopal Rao; Medical Biotechnology; Oxford University Press; Edition: 2 nd ; 2012.								
a. h		Jochen Decker (Editor), Udo Reischl (Editor)								
b. 3. Int	ů	of Infectious Diseases (Methods in Molecular Medicin; Humana Press; 2003. genesis, Prevention, and Case Studies. Authors: Nandini Shetty, Julian W Tang, Julie Andrews; (20	00)							
	_	chesis, i revenuon, and case Studies. Autions, ivalidini Shetty, Junan w Tang, June Andrews; (20	(9)							
	rning Source:									
-	/nptel.ac.in/courses/102									
https://	/www.youtube.com/wat	ch?v=uOFMFoxKmwQ								

CO I						С	ourse A	rticulati	ion Mat	rix: (Map	ping of CC	os with POs	and PSOs)	1		
CO2 3 3 3 1 3 2 2 3 3 3 3 2 CO3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 2 3 </th <th>PSO</th> <th>PO1</th> <th>PO2</th> <th>PO3</th> <th>PO4</th> <th>PO5</th> <th>PO6</th> <th>PO7</th> <th>PO8</th> <th>PO9</th> <th>PO10</th> <th>PO11</th> <th>PO12</th> <th>PSO1</th> <th>PSO2</th> <th>PSO3</th>	PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO3 3 3 3 3 3 3 2 2 2 3 3 3 3 2 CO3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2	CO1	3	3	3	3	1	3	2	2				3	3	3	2
	CO2	3	3	3	3	1	3	2	2				3	3	3	2
CO4 3 3 3 3 3 2 2 3 3 3 3 2	CO3	3	3	3	3	3	3	3					3	3	3	2
	CO4	3	3	3	3	3	3	2	2				3	3	3	2
CO5	CO5															

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2022	2-23										
Course Code	BE613	Title of the Course	Environmental Sustainability	L	Т	Р	С				
Year	2 Semester 3										
Pre-Requisite	BE401	401 Co-requisite									
Course Objectives	To impart deeper understanding of environmental sustainability - a wiser use of resources in the context of economic, social and environment nexus.										

	Course Outcomes
CO1	The students will be able to understand about the economic, social, and environmental aspects of sustainability and some frameworks for
	defining and measuring progress toward a sustainable society.
CO2	The students will be acquainted with the knowledge of the methods tools and incentives for sustainable development.
CO3	They will be able to synthesize alternative solutions to multi-dimensional challenges for sustainable society.
CO4	They will be able to understand the regulatory mechanism in the area of environmental compliance laid down by various agencies

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO							
1	Environmental Pollution and its impact	Air Pollution: impacts and control measures; Water Pollution: sources, sustainable water treatment strategies; Solid waste: sources and impact of solid waste accumulation, solid waste management, zero waste concept, 3R concept; Environmental issues: climate change, Global warming, Resource depletion, Ozone depletion etc.	8	1							
2	Environmental Management Standards	Aims and objectives of Environmental Impact Assessment (EIA). Environmental Impact Statement (EIS) and Environmental Management Plan (EMP). Impact Assessment Methodologies. Life-cycle analysis (LCA), Guidelines for Environmental Audit. Environmental Planning as a part of EIA and Environmental Audit. Environmental Management System Standards (ISO14000 series). Carbon credits; Carbon trading; Carbon foot print. Basic concepts-Conventional and Non-conventional energy, Solar energy, Hydro power,	8	2							
3	Sustainable Energy Resources	8	3								
4	Environmental Legislation and Policy	8	4								
5											
Referen	nce Books:										
1.		hnology, Principles and Applications by Bruce E Rittman and Perry L McCarty, McGrawhill High	gher education	on.							
2. Environmental Biotechnology Edited by Hans-Joachim Jördening and J Winter, WILEY-VCH VerlagGmbh& Co.											
3. Environmental Biotechnology Edited by Hans-Joachim Jördening and J Winter, WILEY-VCH VerlagGmbh& Co.											
4. A text book on biotechnology. Kumar H.D II Edition, Affiliated east west press Pvt. Ltd., New Delhi.											
e-Lean	rning Source:										

					Course 2	Articulat	tion Mat	rix: (Maj	pping of	COs with	POs and l	PSOs)				
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO	101	101	102	105	104	105	100	107	100	10)	1010	1011	1012	1501	1502	1505
CO1	3	3	2	2	2	2	3	2					3	3	3	
CO2	3	3	2	2	2	2	3	2					3	3	3	
CO3	3	3	2	2	2	2	3	2					3	3	3	
CO4	1	1	1	2	1	2	3	1					3	3	3	

	1
Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-2021								
Course Code	BE699	Title of te Course	M.Tech. Dissertation		Т	Р	С	
Year	II	Semester	III		0	8	4	
Pre-Requisite	None	Co-requisite	None					
Course Objectives	To acquaint the student with the various techniques used in contemporary research in biotechnology that will be useful in the successful completion of their project work in the fourth semester.							

Course Outcomes								
CO1	Understand biological databases and in silico tools required to explain homology searching and 3D structure prediction of							
	biomacromolecules.							
CO2	Understand the basics of plant tissue culture media and in vitro establishment of different types of cultures.							
CO3	Understand basic knowledge of animal cell culture technology including media preparation, cell maintenance, cell viability analysis and morphological studies.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Biological Databases	Biological Databases (e.g.; sequence databases, structure databases and specialized databases) and their retrieval tools and methods.	4	CO1
2	Sequence similarity searching	Sequence similarity searching (e.g., BLAST and FASTA).	4	CO1
3	Protein sequence analysis	Protein sequence analysis using ExPASy Bioinformatics resource portal and multiple sequence alignment using Clustal W tool.	4	CO1
4	3D structure prediction	3D structure prediction of protein through homology modeling and their visualization by PyMol/DS Visualizer/RasMol	4	CO1
5	Media preparation	To prepare media for plant tissue culture (MS media).	4	CO2
6	Maintenance of callus and suspension cultures	Induction of callus and suspension culture.	4	CO2
7	Induction of multiple shoots	Multiple shooting and organogenesis from buds.	4	CO2
8	Micropropagation	Plant regeneration by micropropagation.	4	CO2
9	Media preparation	To prepare media for animal cell culture (A549 cell line).	4	CO3
10	Maintenance of cell lines.	In-vitro maintenance of cell lines.	4	CO3
11	Viability analysis of cells	To check viability of cells using 3-4, 5 dimethylthiazol-2yl-2, 5-diphenyl tetrazolium bromide (MTT) assay.	4	CO3
12	Morphological analysis of cells	To perform Hematoxylin and Eosin (HE) staining for morphological analysis of cells.	4	CO3
Referer	nce Books:			
Bioinfo	rmatics: A Practical Appr	oach by K Mani and N Vijayaraj, Aparna Publications, Coimbatore.		
Bioinfo	rmatics: Sequence, Struct	ure, and Databanks- A Practical Approach by Des Heggins and Willie Taylor, Oxford Universit	y Press.	
Plant Ti	issue Culture: Techniques	and experiments by Roberta Smith, Elsevier.		
Plant Ti	issue Culture: Theory and	Practice, a Revised Edition by S.S. Bhojwani and M.K. Razdan, Elsevier.		
		ogy (THE BASICS (Garland Science)		
Culture	of Animal Cells: A Manu	al of Basic Technique and Specialized Applications 7th Edition 2016 By R. Ian Freshney		
e-Lea	rning Source:			
https://v	www.vlab.co.in/			
https://v	www.youtube.com/watch?	v=Cqle28h9G9w&t=7s		

https://rc.med.sumdu.edu.ua/wp-content/uploads/2019/06/Tissue-culture-lab-manual.pdf

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO															
CO1	1	1	1	2	2	2	2	1	1	1	2	3	2	2	2
CO2	1	1	1	3	3	2	2	1	1	1	2	3	3	1	2
CO3	1	1	1	3	1	1	1	1	1	1	1	3	3	2	1

Effective from Session: 2020 -21									
Course Code	BE 699	Title of the Course	M Tech Dissertation	L	Т	Р	С		
Year	2	Semester	4	0	0	0	4		
Pre-Requisite	None	Co-requisite	None						
Course Objectives	improve criti	cal thinking ability for tools. To develop skil	and problem solving skills. To nurture ability to perfor formulation of research plan. To develop skills to use to think critically on research results. To enhance the w	variou	s engin	eering	and		

	Course Outcomes							
CO1	Capability to work independently on a research-based problem.							
CO2	Skill to perform review of available literature effectively to present research gap.							
CO3	Aptitude to plan methodology for the attainment of various research objectives.							
CO4	Competency to apply of various engineering and technological tools to carry research.							
CO5	5 Ability to conclude work using critical thinking.							
CO6	Proficiency in preparing presentation and report.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
Referen	ce Books:			
e-Lear	ning Source:			
e Leur	ing sources			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO															
CO1	1	1	1	3	3	1	1	3	3	3	1	3	3	3	3
CO2	1	1	1	3	3	1	1	3	3	3	1	3	3	3	3
CO3	1	1	1	1	3	1	1	1	3	3	1	3	3	3	3
CO4	1	1	1	3	3	1	1	1	3	1	1	3	3	3	3
CO5	1	1	1	3	3	1	1	3	3	3	1	3	3	3	3
CO6	1	1	1	1	3	1	1	3	3	3	1	3	3	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD